
Control Systems : Set 11 : Statespace (2) - Solutions
Prob 1 | Consider a system with state matrices

A =

[
−2 1

0 −3

]
B =

[
1

1

]
C =

[
1 3

]
a) Use feedback of the form u(t) = −Kx(t) + N̄r(t), where N̄ is a nonzero scalar, to move

the poles to −3± 3j

The reference has no impact on the pole locations. The poles are given by

det(sI − A+ BK) = (s + 2 +K1)(s + 3 +K2)− (K2 − 1)K1 = s2 + 6s + 18

Equating coefficients and solving gives K =
[
5 −4

]
b) Choose N̄ so that if r is a constant, the system has zero steady-state error, that is y(∞) =
r

We choose N̄ so that the DC gain between r and y is unity. DC occurs when the
derivative is zero

ẋ = 0 = (A− BK)x + BN̄r → x = −(A− BK)−1BN̄r
y = Cx = −C(A− BK)−1BN̄r

=
5

9
N̄r

So to have a DC gain of one, we need

C(A− BK)−1BN̄ =
5

9
N̄ = 1 → N̄ =

9

5

c) The system steady-state error performance can be made robust by augmenting the system
with an integrator and using unity feedback, that is, by setting ẋI = r − y , where xI is the
state of the integrator. To see this, first use state feedback of the form u = −Kx −KIxI so
that the poles of the augmented system are at −3, −2± j

√
3

Adding an integrator to the system enhances the system dynamics to[
ẋ

ẋI

]
=

[
A 0

−C 0

] [
x

xI

]
+

[
B

0

]
u +

[
0

1

]
r

y =
[
C 0

] [x
xI

]
We design a state-feedback controller in the usual fashion for this new, larger system



via the place function in Matlab.

K =
[
0.3 1.7 −2.1

]



Prob 2 | For the system

ẋ =

[
0 1

−6 −5

]
x +

[
0

1

]
u

y =
[
1 0

]
x

design a state feedback controller that satisfies the following specifications:

• Closed-loop poles have a damping coefficient ζ = 0.707

• Step-response peak time is under 3.14sec

The peak time is related to the damped frequency ωd

Tp =
π

ωd

To achieve a peak time of 3.14, we need a damped frequency of 1. Solving for ωn gives

ωd = ωn
√
1− ζ2 = 1 → ωn = 1.414

Our desired characteristic equation is therefore

s2 + 2ζωns + ω
2
n = s

2 + 2s + 2

Our state feedback controller takes the form u = −Kx , and the resulting closed-loop char-
acteristic equation is

det(sI − (A− BK)) =
∣∣∣∣[ s 0

0 s

]
−

[
0 1

−6 −5

]
+

[
0 0

K1 K2

]∣∣∣∣
=

∣∣∣∣[ s −1
6 +K1 s + 5 +K2

]∣∣∣∣
= s(s + 5 +K2) + 6 +K1

= s2 + (5 +K2)s + 6 +K1

We equate the coefficients to get

5 +K2 = 2 → K2 = −3
6 +K1 = 2 → K1 = −4



Prob 3 | Consider the following system

ẋ =

[
0 1

0 −10

]
x +

[
0

1

]
u

y =
[
1 0

]
x

a) Design a state feedback controller so that the closed-loop step response has an overshoot
of less than 25% and a 1% settling time under 0.115sec

The given criteria translate into pole locations:

ζ ≥
− log(0.25)√
log(0.25)2 + π2

= 0.4

Ts =
− log(0.01)
ζωn

= 0.115 → ωn = 99

Which gives a desired characteristic equation of

s2 + 2ζωns + ω
2
n = s

2 + 80s + 9′839

The closed-loop system will be

A− BK =
[
0 1

0 −10

]
−
[
0 0

K1 K2

]
=

[
0 1

−K1 −10−K2

]
which has the characteristic equation

s2 + (10 +K2)s +K1

Equating the coefficients to our desired equation gives

K =
[
9′839 70

]
b) Use the step command in Matlab to verify that your design meets the specifications. If it

does not, modify your feedback gains accordingly.

The following matlab commands solves the problem

% System equations
A = [0 1 ; 0 - 1 0 ] ;
B = [ 0 ; 1 ] ;
C = [1 0 ] ;

5 D = 0;

% Specifications
Mp = 0 . 25 ;
Ts = 0 .115 ;

10 Settl ingTimeThreshold = 0 . 01 ;

% Compute target poles



zeta = - log (Mp)/ sqr t ( log (Mp)^2 + pi ^2) ;
wn = - log ( Settl ingTimeThreshold )/( zeta *Ts ) ;

15 p = roots ( [ 1 2* zeta *wn wn^2 ] ) ;

% Place the poles
K = place (A, B, p)

20 K =

9839 70.09

25 % Simulate the closed−loop system
cl_sys = ss (A-B*K, B, C, D) ;
s t ep in f o ( cl_sys , ’ s e t t l i ng t ime th r e sho ld ’ , Settl ingTimeThreshold )

ans =
30

s t ruc t with f i e l d s :

RiseTime : 0.014832
Settl ingTime : 0.11395

35 Sett l ingMin : 9.5286 e -05
SettlingMax : 0.00012704

Overshoot : 24.998
Undershoot : 0

Peak : 0.00012704
40 PeakTime : 0.0345

Prob 4 | Consider the electric circuit shown in the figure below, that you designed a controller for in the
fifth exercise

7045

Figure 7.90: Electric circuit for Problem 7.37.

(a) Apply Kirchho§ís voltage and current laws, with x1 = iL and x2 = vc, we obtain,

L _x1 +Rx1 = x2 +RC _x2;

_x2 = u! x1;
y = (u! x1)R

Thus,

!
_x1
_x2

"
=

!
!2R=L 1=L
!1=C 0

" !
x1
x2

"
+

!
R=L
1=C

"
u;

y =
#
!R 0

$
x+Ru:

(b) The condition for the system to be uncontrollable is det(C) =0.

C =
#
B AB

$
=

!
R=L !2R2=L2 + 1=LC
1=C !R=LC

"
:

det(C) = R2=L2C ! 1=LC2:

Thus, the system is controllable if R2 6= L=C.
(c) The condition for the system to be unobservable is,

O =

!
C
CA

"
=

!
!R 0
2R2=L !R=L

"
:

det(O) = R2=L:

Since det(O) 6= 0 for any R;L;C except R = 0 or L =1, the system is observable.

38. The block diagram of a feedback system is shown in Fig. 7.91. The system state is,

x =

!
xp
xf

"
;

and the dimensions of the matrices are as follows:

A = n& n; L = n& 1;
B = n& 1; x = 2n& 1;
C = 1& n; r = 1& 1;
K = 1& n; y = 1& 1;
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a) What condition(s) on R, L and C will guarantee that the system is observable?

Recall the state-space representation derived in the previous exercise set(
i̇L
v̇c

)
=

[
−RL

1
L

− 1C 0

](
iL
vc

)
+

(
R
L
1
C

)
u

y =
[
−R 0

]( iL
vc

)
+ Ru



The condition for the system to be unobservable is

det(O) = 0

=

∣∣∣∣[ CCA
]∣∣∣∣ = ∣∣∣∣[−R 0

R2

L −RL

]∣∣∣∣
=
R2

L

As the determinant is non-zero for all positive R and L, the system will be observable for
all parameters.



Prob 5 | Consider the system

A =

[
−2 1

1 0

]
B =

[
1

0

]
C =

[
1 2

]
and assume that you are using feedback of the form u = −Kx + r where r is a reference input
signal

a) Show that (A,C) is observable

O =
[
C

CA

]
=

[
1 2

0 1

]
is nonsingular. Therefore (A,C) is observable.

b) Show that there exists a K such that (A− BK,C) is unobservable

The observability matrix of the closed-loop system is

O =
[

C

C(A− BK)

]
=

[
1 2

−K1 1−K2

]
The system is unobservable when the observability matrix looses rank.

detO = 0 = 2K1 −K2 + 1

c) Compute a K of the form K =
[
1 K2

]
that will make the system unobservable as in part

(b), that is, find K2 so that the closed-loop system is not observable

Solving the expression derived in the previous question gives

0 = 2K1 −K2 + 1 → K2 = 3

d) Compare the open-loop transfer function with the transfer function of the closed-loop
system of part (c). What is the unobservability due to?

Gol(s) = C(sI − A)−1B =
s + 2

s2 + 2s − 1 =
s + 2

(s + 2.414)(s − 0.4142)

Gcl(s) = C(sI − A+ BK)−1B =
s + 2

s2 + 3s + 2
=

s + 2

(s + 2)(s + 1)

We see that the closed-loop system is unobservable due to pole-zero cancellation,
meaning that we don’t see the impact of these states at the output of the system.


